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Can Dirac Observability Apply to Gravitational 
Systems? 
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The problem of what is observable in general relativity is investigated. With the 
help of Landau's observable space interval, the observational frames for individual 
observers are established. Within the Ashtekar formulation of general relativity, 
we argue from the nonvanishing Poisson brackets of the Yang-Mills field and 
the constraints that Dirac observability does not apply to gravitational systems. 

1. I N T R O D U C T I O N  

In general, in a theory with a gauge invariance (in a generalized sense) 
it is assumed that only gauge-invariant quantities can be measured and/or 
predicted by the theory. In general relativity, the problem is still far from 
being trivial and has been debated (Kuchar and DeWitt, 1991). Actually, one 
may find in the literature substantially contrasting points of view on this 
issue (Stachel, 1986). These viewpoints can be classified into two: the nonlo- 
cal point of  view and the local point of  view. Recently, Rovelli (1991) consid- 
ered in the metric representation a model in which the matter represents the 
physical reference system. In this paper, we discuss the problem of observables 
in the vierbein formulation. Based on the Einstein's observable time and 
space interval, we take the local point of  view that any measurement in 
physics is performed in the local flat reference system whose existence is 
guaranteed by the equivalence principle. In Section 2, we give the observa- 
tional local flat systems for different observers with the help of Landau's 
definition of observed space length and argue that the observed quantities 
should be the projections of Riemann geometric quantities onto the local flat 
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system. In Section 3, from the fact that in the Ashtekar formulation of general 
relativity the Yang-Mills field, which is empirically observable, does not 
commute with the gravitational first-class constraints, we argue that Dirac 
observability does not apply to general relativity. 

2. THE MEASURING SIGNIFICANCE OF VIERBEIN 

It is well known that in the vierhein formalism of general relativity there 
are two kinds of quantities: Riemannian quantities such as the curvature R ~  
and Lorentzian quantities such as Rab,,~, which is related to R ~  as 

R a b m  n = p~ v a f~ e a  e b e m e n  R~vaa (1) 

Our conventions are as follows: 

g ~  = " q a b ~ ,  "qab = diag(1, -1 ,  - 1 ,  - 1 ,  ) 

A problem then arises: for a given spacetime, which kind of quantities 
are observable? For instance, when there exists a Maxwell field, which one 
of F ~  and Fab is measured in the laboratory? This problem is very important 
because physics, by its nature, studies observables and their relationship. 

Since the measuring of space and time is the foundation of all other 
measurement, we should study first the observable time and spatial interval 
of two world events x and x + dr whose interval is dx~. Einstein (1979) 
pointed out that in a local system, for two neighboring point events, 

ds 2 = g ~ l x ~ d r  v = AT 2 - AL 2 (2) 

where AL is measured directly by a measuring rod and AT by a clock at rest 
relative to the system: these are the naturally measured lengths and times. 
Though there is still an ambiguity in this statement, which is that AT and 
AL are different in different Lorentz gauges, one point is clear: what is 
measured is AT and AL instead of dx~. According to Hawking (1988), in 
the theory of relativity, there is no unique absolute time, but instead each 
individual has his own personal measure of time that depends on where he 
is and how he is moving. This argument is in good agreement with that of 
Einstein. Moreover, it indicates that an observer is characterized by his 
position and velocity, i.e., an observer can be denoted by O(x, u). With regard 
to physical measurement, Wald (1984) pointed out that an observer equipped 
with measuring apparatus can be characterized by an orthonomal basis which 
forms a locally inertial frame e~ of which the first denotes the alignment of 
his time rod and the other three serve as references for how he aligns the 
measuring apparatus. So according to this argument, the observed quantities 
are the projections onto the basis e~ of the quantities in general spacetime. 
Therefore, the key problem is how to determine the basis. 
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Let us study first the case for a static observer (~ whose velocity is u ~ 
= (gff0 ~/2, 0, 0, 0). The measured time and space interval for a static observer 
is (Landau and Lifshitz, 1951) 

g0~ dx ~ (3) AT--- ~ g ~  

= (goigoj ) AL2 \ ~-~ gij dx i dxJ (4) 

We next show that this is equivalent to saying that the time rod of ~ is fixed by 

e ~ = u~ (5) 

Since 

u~. = g~,,u ~' = go.o (6) 

then if equation (5) holds, from (a' = 1, 2, 3) 

g00 = (e~ 2 - (e~o') 2 (7) 

we have 

eS' = 0 (8) 

so from equation (1), we have equations (3) and (4). Equations (5) and (7) 
determine the time rod of (~; the directions of the spatial rods remain arbitrary, 
i.e., the observer may rotate arbitrarily his apparatus and this does not affect 
his observed results. 

For a moving observer (Y, how do we fix the basis? As a principle, we 
generalize equation (5) to the case for arbitrary ur The reason for this 
generalization is that it makes the observed time and thus the observed length 
to be coordinates xr Suppose that his velocity is u '~ :/: u~; 
denote the basis as ~ ;  then according to special relativity, ~ should be 
related to ~ by a local Lorentz transformation, which is determined by the 
relative Lorentz velocity u 'a = u'r 

ea~(x) = Aab(uta)eb~(x) (9) 

where AacAbdrlab = "qcd" ThUS A is determined up to a spatial rotation, 

A0b = U~ (10) 

With this definition of the observable space and time interval, we can 
solve the problems of the twin paradox and the red shift. Let us discuss the 
latter. Consider two static observers A and B; two light waves start at XA ~ and 
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x$ + dx,~ to travel from A to B. The world lines for each wave, C 1 and C2, 
are null, so 

- g o ,  d x i  + x/(goigoj - googij) dxidxj  
a t  = (11) 

g0o 

In general, equation (11) is a differential equation; in some special cases, for 
example, the static metric and the Robertson-Walker (RW) metric, it can be 
readily integrated. After equation (11) is solved, we can obtain the world 
points x~ and x$ + dx$ at which the two waves arrive at B. Then the red 
shift is 

p: XA)  ~ 

For a static metric such as the Schwarzschild metric, it can be easily shown 
that dx ~ = dx 0, so we have 

v~ = /goo(xa) 
va ~ / ~  (13) 

For the time-dependent RW metric, we have 

ax  ~ R ( x  ~ ) 

dx  o - R(xOs) (14) 

so the red shift is given by 

vB R(x ~ 
- - -  ( 1 5 )  

vA R(x ~ 

Though the argument that the quantity F ~  is not observable may sound 
strange, it can be illustrated by the following example. Suppose that there is 
a uniform electric field E = (0, 0, E) in the Minkowski spacetime. An 
observer S rotates around the z axis with angular velocity to; the distance 
between S and the z axis is r, rto -< c. Denote the coordinates of the static 
frame as Xr = (cT, R, O, Z), those of the rotating frame as x ~ = (ct, r, O, 

z). Then we have 

R = r ,  Z = z ,  T = t ,  0 = O + t o t  (16) 

Hence 

ds  2 = c 2 d T  2 - d R  2 - R2dO 2 - d Z  2 = G r 1 6 2  �9 

to2r2) 
= 1 - - - ~  c2dt 2 - dr  2 - r2d0 2 - dz 2 + 2tor2c dOd(ct) = g ~ x ~ d x  ~ 

(171 
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and so to S, the spacetime is no longer Minkowski. According to the discussion 
above, the observation frame of S is given by 

( ~/1 - o)2r21c z 0 tor21~/c 2 - o)2r 2 ! )  
0 1 0 

e~ (x) (18) 0 0 rc /x /C 2 -- ~2r2 

0 0 0 

In the static frame, the electromagnetic tensor is 

( 000 0 i ,c) 
Fr = 0 0 (19) 

EIc 0 0 

Hence the electromagnetic tensor in the rotating frame is given by 

i.e., 

f ~  - m 
OX p. OX v 

o o o ~,c]  
~o o o o  I 

0 0 - o E / c  2 (20) 
EIc 0 toEIc 2 o 

0 0 0 ~ , c )  
yah= 0 0 0 / 

0 0 -~ltorEIc z (21) 
~EIc 0 ~ltorEIc 2 o 

where ~ /=  1/~/1 - r2to21c 2. That is, the electromagnetic field S observed is 

E = (0, 0, ~/E), B = (~torE/c 2, 0, 0) (22) 

According to special relatively, the relationship of electromagnetic fields in 
two inertial frames is given by 

Ell = Ell, B~ = BIt 

E't = ~/(E + v x B)• 
( v )  

.1. 

(23) 

(24) 

When v ~ c, E• ~ ~, B• ---) ~; hence it is obvious that f~v is not the 
observed quantity, whereas fan is. 

We make some remarks. First, according to equation (1), the observed 
speed of light is always constant and isotropic. Second, it is necessary to 
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introduce the vierbein formalism not only for mathematical reasons, but also 
because of physical measurement considerations. Third, the general covariant 
conservative energy-momentum and angular momentum obtained in Duan 
et al. (1988), Duan and Feng (1996), Feng and Zong (1996), Feng and Duan 
(1995), and Feng (1996) are actually observable. 

3. LANDAU'S SPACE INTERVAL AND YANG-MILLS FIELD DO 
NOT COMMUTE WITH THE CONSTRAINTS 

In the Ashtekar formalism of gravity coupled to the Yang-Mills field, 
the Lagrangian is (the indices I~, v, etc., go from 0 to 3) (Ashtekar et al., 1989) 

,~ :-- (4r 4FixvAB "1" l(4cr)gO'Vgaf~ Tr 4F~ 4Evil (25) 

After 3 + 1 decomposition, four constraints can be obtained, 

GAB = i4~O,~B ~ 0 (26) 

C~ = i,,/~ Tr(O~F~) - Tr(E~F~) ~ 0 (27) 

= -Tr(O~O~F~) + -~r -2 Tr(O~O0 Tr(O~o ~) Tr(E~E~I3 + B~B~I3) ~ 0 
(28) 

= D~l~.~ ~- 0 (29) 

where the boldface letters refer to the Yang-Mills field, and Tr denotes the 
trace over the gravitational SU(2) spin indices and the trace over the Yang- 
Mills internal indices. E~ (the Yang-Mills electric field) is the canonical 
momentum of the field A~, which is the projection of the Yang-Mills field 
4A~ onto the Cauchy surface ~t; E~,  B ~  are dual to the Yang-Mills electric 
and magnetic fields, respectively. 

Denote the generators of the Yang-Mills internal group as hi, A~ = 
A~ht, [kt, hs] = J~sghr. In (29), D~ is the Yang-Mills connection determined 
by A~. The fundamental Poisson brackets are 

i 
y)SvS(ASB) (30) {O~a(x), A~MN(y)} -- v/~ 8(x -- ~ M 

{E}~(x), AS~(y)} = 8(x - y)8~St s (31) 

Using the smeared constraint functionals 

C~ = iv~2 Ix d3x N~ (32) 

C~ = -I~ d3x N j ' ~  (33) 
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CN'N = JX d3x Tr(NC + NC) (34) 

C~ = C~ - fx d3x Tr[N~(AgC + AgC)] (35) 

we have the Poisson brackets 

{CN, N, E~} = [N, E~], {CN,N, Ag} = -D~N (36) 

{C~, ~ }  = ~ E g ,  {C~, A~,} = ~ A ~  (37) 

i Tr[D~(No._ 2 Tr(O~O• Tr(O~O~)F~v)hj ] (38) 

i 
{C_N, A~(x)} = ~ Nor -2 Tr(O~O0 Tr(OXO~)'q~,~x'q~l~ Tr kthL (39) 

Since 

{ CN, O~} = -2~(NOt~0-~l) (40) 

{ CN,N, O ~ } = [N, O ~] (41) 

{C~, O ~} = ~ O  ~ (42) 

we have 

{ Ci, EI, AB} =/= O, { Ci, A~B} =/= 0 (43) 

where Ci = CN, N, C~7, C~ and EI, AB = r  A ~  = CYmBAl, which are 
observed quantities according to the discussion of the last section. 

From the 3 + 1 decomposition of the metric 

goo = h ~ N ~ N  ~ - N 2, go~ = h ~ N  ~ (44) 

g ~  = h~  = - T r  ~r~rv (p~ = 1, 2, 3) (45) 

it is easy to obtain that 

~(ap~MN(Yv MN ) 
{ C i, h~,v} - ~KAB { Ci, ~yKAB} (46) 

dt2} _~. { Ci, hp~v } dxiX dxV _ ~ Ci" gop.gov~ dxP. dx v {c.  (47) 
( goo J 

Hence, in general, 

{C~, dL ~} ~ 0 (48) 
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Similarly, the bracket of Ci and dT  is not zero in general, 

{ Ci, a T  } ~ 0 (49) 

Since the Yang-Mills field and the space interval are empirically observable, 
equations (43), (48), and (49) imply that physical observables may not com- 
mute with the first-class constraints in curved spacetime. 

We make some final comments. In constrained systems, it is generally 
accepted that physical observables should commute with the first-class con- 
straints which generate gauge transformations in the general sense (Dirac, 
1964; Gitman and Tyutin, 1990). From (43), (48), and (49), it can be concluded 
that in general relativity, we cannot follow this dogma. Similar situations occur 
in the parametrized models (Huang et al., n.d.). How are we to understand the 
difference? As is discussed in Section 2, the measuring system of an observer 
is determined by his position and velocity, i.e., the measured results depend 
on the specific spacetime position and the local Lorentz system in the specific 
gauge. The constraints (26)-(29) generate changes in both the spacetime 
position and the local Lorentz gauge, and thus may generate changes in the 
measured results; hence the observable quantities need not commute with 
them. But in other systems, such as QED and QCD, the Yang-Mills con- 
straints generate only internal gauge transforms rather than changes in the 
position and local Lorentz gauge, and so do not affect the measured results; 
hence it is natural to require that the observables should commute with the 
first-class constraints. 
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